One of the potential pitfalls for machine learning strategies is the extremely low signal-to-noise ratio in financial markets, says Marcos López de Prado, who joined AQR Capital Management as head of machine learning in September and is the author of the 2018 book Advances in Financial Machine Learning. “Machine learning algorithms will always identify a pattern, even if there is none,” he says. In other words, the algorithms can view flukes as patterns and hence are likely to identify false strategies. “It takes a deep knowledge of the markets to apply machine learning successfully to financial series,” López de Prado says.
Nigol Koulajian echoes that view. The founder and chief investment officer at Quest Partners, a New York-based systematic macro hedge fund that manages $1.7 billion, says that quants coming out of finance programs and high-tech companies often expect to create optimizations at a much higher level of precision than is warranted in finance. “They’re coming with a mindset that we’re going to conquer the world with big data,” Koulajian says. In finance, though, the market regime is not static, and markets aren’t closed systems like a chess game. “You can have one little pin drop that can basically make you lose over 20 years of returns,” he says.
[...]
Fonte: aqui
Nenhum comentário:
Postar um comentário